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What we will discuss

In this series of talks we will discuss various constructions from the paper
”Étale Theta Function and its Frobenioid-theoretic Manifestations”
(sections §1 and §2) as well as from the paper ”Inter-Universal Teichmüller
Theory II: Hodge-Arakelov-Theoretic Evaluation” by S. Mochizuki.
In the slides, they will be referred to as [EtTh] and [IUT2].
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Overview

Here is a very general overview of this series of talks.

We construct a diagram of covers of a punctured elliptic curve X .

Then, we define an analytic function on an infinite cover of X (theta
function), analyse its properties and give a group theoretic
construction of its cohomology class.

Next, we introduce the notion of mono-theta environment, which
serves as a sort of ”bridge” between the group theoretic (”étale-like”)
theta function and its ”Frobenius-like” version.

We discuss the property of multiradiality of theta monoid as well as
Galois evaluation, which produces values of the form ”qj

2
”.

Finally, we globalize this local construction by introducing a (realified)
Gaussian Frobenioid.
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Notation

Let us fix some notation.
p - a prime number, p 6= 2,
K - a p-adic field, i.e., a finite extension of Qp, such that

√
−1 ∈ K ,

GK = Gal(K alg/K ) - the absolute Galois group of K ,
E - an elliptic curve over K with split multiplicative reduction, i.e., a Tate
curve, with E [2] ⊂ E (K ),
O - the origin of the elliptic curve E ,
X = E \ {O} - a hyperbolic curve of type (1, 1).
Denote by

ΠX = πet1 (X ) and ∆X = πet1 (XK alg )

the étale fundamental groups of X .
Similarly, write Πtp

X and ∆tp
X for their tempered fundamental groups.
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Reminder on the Tate curve

Recall the Tate uniformization:
There exists a unique q ∈ K ∗, |q| < 1 such that we have a Galois
equivariant isomorphism E (K alg) ∼= (K alg)∗/qZ (= Gm/Z)
The element q is called the q-parameter of E .
The homomorphism Gm → Gm/Z is a Z-cover of E (not algebraic).
⇒ not described by the étale fundamental group of E .
On the other hand, it is a tempered cover. In fact the map Gm → E is a
universal topological cover of E .
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Geometry of universal covering space, ([EtTh],§1)

Write Y → X for the tempered Z-cover Gm → Gm/Z.
Another point of view:
Let X - a formal scheme obtained by completion of a stable model of X
along the closed fibre.
Let Y - ”the universal topological cover of X”.
The (Raynaud) generic fibre YK of Y is Y ∼= Gm,K .
The map of formal schemes Y→ X defines the cover Y → X .
Special fibre of Y = infinite chain of projective lines.

Dual graph of Y , infinite sequence
of projective lines P1. Dual graph of X , a closed loop.
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Double cover of Y

We choose a vertex of the dual graph of Y (i.e., an irreducible component
of the special fibre of Y ) and label it with ”0”.

0

Dual graph of Y with label ”0”

Observe that the choice of zero label together with the geometry of the
special fibre determines labels in Z for all vertices, well defined up to ±1.
We also consider a double cover Ÿ → Y given by the square map

Gm → Gm, x 7→ x2.

Thus we have covers Ÿ → Y → X and open subgroups Πtp

Ÿ
⊂ Πtp

Y ⊂ Πtp
X .
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Plan

Recall our plan for the reminder of the talk.

Our goals

Construct a geometric diagram of covers of X , which plays an
important role in the theory,

Define certain analytic function on Ÿ , the theta function and discuss
some of its properties,

Construct certain theta function group theoretically from various
tempered fundamental groups.

Wojciech Porowski (Univ. of Nottingham) EtTh September 2021 8 / 40



A quick look at the geometry, ([EtTh],§2)

Here is the diagram of covers we are about to construct

Ÿ Ÿ

Y Y

X X X

C C

µ`

µ2
µ2

µ`

`Z `Z

µ` Z/`Z

Z/2Z Z/2Z

(here ` is an odd prime number).
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Various quotients

First, we have to introduce various quotients of fundamental groups.
Define

∆Θ
X = ∆X/[∆X , [∆X ,∆X ]].

Because ∆X is a free profinite group on two generators, ∆Θ
X is abstractly

isomorphic to the following matrix group

1 Ẑ Ẑ
0 1 Ẑ
0 0 1

 .
Next, define the quotient:

∆ell
X = ∆X/[∆X ,∆X ]

(ell covers of X extending to covers of E , i.e. unramified over the cusp).
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Various quotients (2)

Further, we define
∆Θ = Ker(∆Θ

X → ∆ell
X ).

Thus we have a short exact sequence

1→ ∆Θ → ∆Θ
X → ∆ell

X → 1

isomorphic to

1 0 Ẑ
0 1 0
0 0 1

 1 Ẑ Ẑ
0 1 Ẑ
0 0 1

 Ẑ× Ẑ.

Finite covers of X that we will construct are (geometrically) determined by
quotients of ∆Θ

X .
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More covers (1)

Fix an odd prime number `.
We enhance Ÿ → Y → X (i.e., Gm → Gm → Gm/q

Z) to:

Y

X X

The subcover X → X is the unique subcover of Y → X of degree `,
corresponding to the subgroup `Z ⊂ Z ∼= Gal(Y /X ), so we have

Gal(X/X ) ∼= Z/`Z.

Thus Y → X → X corresponds to

Gm → Gm/q
`Z → Gm/q

Z.

Notice that the cover X → X corresponds to the ”canonical multiplicative
subspace”.
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Dual graphs

The cover X → X is also unramifed over the cusp of X
⇒ X is a curve of genus one, thus after choosing one cusp of X as the
origin we get a structure of elliptic curve on the compactification of X .
The zero cusp on Y determines a cusp of X , we choose this cusp as the
origin and we label it with ”0”.

0

1

Dual graph of X , here ` = 9

Observe that after the choice of the zero label, the geometry of the special
fibre determines labels in the set {0,±1, . . . ,±`>} for all cusps, up to ±1.
(here we define `> = (`− 1)/2.)
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Quotient by involution

Write ι (resp. ι) for the automorphism of X (resp. X ) given by
”multiplication by −1” one the underlying elliptic curve.
We define C and C to be stack-theoretic quotients of X and X by the
involutions ι and ι.
Thus we have a (cartesian) diagram:

X X

C C
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Quotient by involution (2)

We write ΠC and ΠC for étale fundamental groups of C and C , similarly
∆C and ∆C for their geometric fundamental groups.
Thus we have ΠX ⊂ ΠC , a normal subgroup of index 2, similarly for the
inclusion ΠX ⊂ ΠC .
Moreover, the covering X → C is also Galois and we denote its Galois
group by

Fo±
` = Z/`Z o {±1} ∼= Gal(X → C ).
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More covers (2)

Next, we are going to construct a cover X → X of degree ` (which will be
totally ramified over cusps of X ).
Write ∆Θ

X � ∆X for the quotient of ∆Θ
X by the subgroup of elements

which are `-powers. Thus ∆X is isomorphic to1 Z/`Z Z/`Z
0 1 Z/`Z
0 0 1

 .
Note that the Galois group of the cover X → X factors through the
quotient ∆X .
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More covers (3)

Write ∆X for the kernel of the surjection ∆X � Gal(X/X ). Thus it is a
free Z/`Z-module of rank 2.
Consider the action of ι on the group ∆X . Its eigenvalues are equal to 1
and −1 (note that 1 6= −1 in Z/`Z since ` is odd), thus the action is
semisimple and we have a splitting

∆X
∼= ∆

ell
X ⊕∆Θ

into a product of eigenspaces with eigenvalues −1 and 1, respectively.
Thus we obtain a quotient map ∆X � ∆Θ which determines a cover of
XK alg of degree ` (totally ramified over cusps). After choosing a
decomposition group of a cusp of X , it descends to a cover

X → X
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More covers (4)

Next, we define covers Y and Ÿ of Y such that the squares below are
cartesian.

Ÿ Ÿ

Y Y

X X

Write Irr() for the set of irreducible components of the special fibre.
⇒ we have Irr(Y ) ∼= Irr(Y ) ∼= Irr(Ÿ ) ∼= Irr(Ÿ ) and Irr(X ) ∼= Irr(X ).
⇒ labels for Y induce labels for all covers in the above diagram (up to ±).
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More covers (5)

To summarize, here is the full geometric picture

Ÿ Ÿ

Y Y

X X X

C C .

µ`

µ2
µ2

µ`

`Z `Z

µ` Z/`Z

Z/2Z Z/2Z
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Anabelian remark, ([EtTh],§2, 2.6)

We need to mention one more anabelian result. For this, we need to
assume additionally that the curve X is not K -arithmetic, equivalently that
C is a K -core. We will not discuss the notion further, however we note
that this assumption excludes only four j-invariants of E .
Under this assumption we may prove that the (tempered) fundamental
groups of all (orbi-)curves from the previous slide can be reconstructed
from the topological group Πtp

X .

In particular, note that it implies that the vertex with label ”0” in the dual
graph of X can also be reconstructed group theoretically from Πtp

X .
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Kummer classes of functions

Next, we would like to consider functions on various (tempered) covers.
Let S be a K -variety. From the Kummer sequence

1→ µn → Gm → Gm → 1

we obtain a boundary map

O(S)∗ → H1
et(S , µn) = H1(π1(S), µn)

Image of f ∈ O(S)∗ in this cohomology group = Kummer class of f .
After taking a limit we have

O(S)∗ → H1(π1(S), Ẑ(1)).
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Theta functions, ([EtTh],§1)

The choice of label zero component determines coordinate functions U
and Ü on Ÿ and Y , satisfying Ü2 = U.
Define an analytic function on Y :

Θ(U) =
∏
n≥0

(1− qnU)
∏
n>0

(1− qnU−1)

Observe that Zeroes(Θ) = {qZ}, each zero is of order one.
One easily checks the following two properties:

(a). Θ(U−1) = −U−1Θ(U),

(b). Θ(qnU) = (−1)nq(n−n2)/2U−nΘ(U).

We will modify Θ to obtain a more ”symmetric” function.
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Geometric remark

Observe that the transformations U 7→ qnU and U 7→ U−1 have a clear
geometric meaning.

U 7→ qnU corresponds to translation
by n lines.

0

U 7→ U−1 corresponds to rotation
around the component ”0”.
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Theta functions (2)

Define an analytic function on Ÿ :

Θ̈(Ü) = ÜΘ(Ü2) = Ü
∏
n≥0

(1− qnÜ2)
∏
n>0

(1− qnÜ−2)

Let q̈ be such that q̈2 = q. From the properties (a) and (b) for Θ we have
the following transformation formula for Θ̈:

(a) Θ̈(Ü−1) = −Θ̈(Ü),

(b) Θ̈(q̈nÜ) = (−1)nq̈−n
2
Ü−2nΘ̈(Ü),

(c) Θ̈(−Ü) = −Θ̈(Ü).

Thus Θ̈ is more ”symmetric” (esp. property (a)). We will sketch a
characterization of a Kummer class η̈Θ of Θ̈ inside H1(Πtp

Ÿ
, Ẑ(1))
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Various quotients (3)

Note that every inertia subgroup I ↪→ ∆X of the cusp maps isomorphically
(through the surjection ∆X � ∆Θ

X ) onto the subgroup ∆Θ ⊂ ∆Θ
X .

In particular, we have a canonical isomorphism of Galois modules

∆Θ
∼= Ẑ(1).

Recall that ∆tp
X ↪→ ∆X (and (∆tp

X )∧ ∼= ∆X ).
We define further quotients:

∆tp
X � (∆tp

X )Θ � (∆tp
X )ell

by taking images of ∆tp
X along the quotients

∆X � ∆Θ
X � ∆ell

X .
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Various quotients (4)

We look at the matrix representation; thus

(∆tp
X )Θ � (∆tp

X )ell

corresponds to 1 Ẑ Ẑ
0 1 Z
0 0 1

 Ẑ× Z.

Note the discrete part corresponding to the topological cover Y → X .
Moreover, observe that we have

∆Θ = Ker((∆tp
X )Θ � (∆tp

X )ell).
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Various quotients (5)

Similarly using the inclusion ∆tp
Y ↪→ ∆tp

X we define quotients:

∆tp
Y � (∆tp

Y )Θ � (∆tp
Y )ell

by taking images of ∆tp
Y along the (previously constructed) quotients

∆tp
X � (∆tp

X )Θ � (∆tp
X )Θ.

Thus, the quotient (∆tp
Y )Θ � (∆tp

Y )ell corresponds to

1 Ẑ Ẑ
0 1 0
0 0 1

 Ẑ.
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Various quotients (6)

Finally, by using inclusion ∆tp

Ÿ
↪→ ∆tp

Y we define quotients:

∆tp

Ÿ
� (∆tp

Ÿ
)Θ � (∆tp

Ÿ
)ell

by taking images of ∆tp

Ÿ
along the (previously defined) quotients

∆tp
Y � (∆tp

Y )Θ � (∆tp
Y )ell .

Thus, the quotient (∆tp

Ÿ
)Θ � (∆tp

Ÿ
)ell corresponds to

1 2Ẑ Ẑ
0 1 0
0 0 1

 2Ẑ.
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Characterising theta class

Recall that our goal is to characterise the Kummer class η̈Θ inside the
cohomology module H1(Πtp

Ÿ
, Ẑ(1)).

Using the canonical isomorphism ∆Θ
∼= Ẑ(1) we may consider instead

η̈Θ ∈ H1(Πtp

Ÿ
,∆Θ).

Define a quotient Πtp

Ÿ
� (Πtp

Ÿ
)Θ which fits in the following s.e.s:

1→ (∆tp

Ÿ
)Θ → (Πtp

Ÿ
)Θ → GK → 1.

Then, the class η̈Θ belongs to H1((Πtp

Ÿ
)Θ,∆Θ) ⊂ H1(Πtp

Ÿ
,∆Θ).

(roughly, it follows from the fact that Θ has zeroes of the same order at
each cusp)
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Characterising theta class (2)

We have the exact sequence:

1→ H1(GK ,∆Θ)→ H1((Πtp

Ÿ
)Θ,∆Θ)→ H1((∆tp

Ÿ
)Θ,∆Θ).

Let us first characterize the image of η̈Θ in rightmost group.
From the s.e.s

1→ ∆Θ → (∆tp

Ÿ
)Θ → (∆tp

Ÿ
)ell → 1

we obtain

1→ Hom((∆tp

Ÿ
)ell ,∆Θ)→ Hom((∆tp

Ÿ
)Θ,∆Θ)→ Hom(∆Θ,∆Θ)→ 1.

Then the image of η̈Θ in End(∆Θ) is the identity (this is equivalent to the
fact that all zeroes of Θ are of order one).
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Characterising theta class (3)

What is the image of η̈Θ in Hom((∆tp

Ÿ
)Θ,∆Θ)?

Let P0 = projective line with label ’0’, and let

ι : Y → Y

be the ”rotation” fixing P0 (corresponds to U 7→ U−1). The map ι lies
over the automorphism [−1] : E → E of the elliptic curve E .
Then, ι induces an automorphism of

(Ẑ⊕ Ẑ ∼=) Hom((∆tp
Y )Θ,∆Θ) ↪→ Hom((∆tp

Ÿ
)Θ,∆Θ) (∼= Ẑ⊕ 1

2
Ẑ)

which may be described group theoretically (since the dual graph of the
special fibre can be reconstructed).
We claim that the image of η̈Θ is the unique class invariant with respect
to ι and mapping to identity in Hom(∆Θ,∆Θ).
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Characterizing theta class (4)

Indeed, using an isomorphism Hom((∆tp
Y )Θ,∆Θ) ∼= Ẑ2, the automorphism

ι may be represented by a matrix[
−1 1
0 1

]
.

Thus, η̈Θ corresponds to the eigenvector [1, 1
2 ]T .

(Note that the appearance of 2 in denominator explains why we need to
introduce the double cover Ÿ → Y ).
Therefore, we can characterise η̈Θ up to an element from

H1(GK ,∆Θ) ∼= K̂ ∗.
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Reducing K̂ ∗-indeterminacy

How to reduce this indeterminacy? We normalize Θ̈ to have a fixed value
at a fixed point. If S is a K -scheme, P ∈ S(K ), D ↪→ π1(S) a
decomposition group of P then we have a diagram:

O(S)∗ H1(π1(S), Ẑ(1))

K ∗ H1(D, Ẑ(1)) ∼= K̂ ∗.

There exists a unique nontrivial 2-torsion point µ− on E whose reduction
lies in the smooth locus (namely the class of −1 in (K alg)∗/qZ).
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Reducing K̂ ∗-indeterminacy (2)

Using a technique called elliptic cuspidalization, together with the
reconstruction of the dual graph we can construct a decomposition
subgroup of µ− inside Πtp

X . Then, we lift µ− to Y and Ÿ to obtain two
collections of points:

{−qn}n∈Z (in Y ) and {±i q̈n}n∈Z (in Ÿ ).

(here i2 = −1 and q̈2 = q, note that q̈ lies in K ).
Then we choose points whose reduction lies on the fixed projective line P0

(namely −1 for Y and ±i for Ÿ ), denote them by µ−(Y ) and ±µ−(Ÿ ).
Finally, we normalize Θ̈ be requiring Θ̈(µ−(Ÿ )) = ±1. Note that since
Θ̈(−Ü) = −Θ̈(Ü), this is well defined.
This finishes our reconstruction of Θ̈, up to a sign.
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Final remarks

In fact, we construct only a Z× µ2-orbit of Θ̈ since there is no
natural choice of irreducible component of special fibre of Y (cf. our
choice of P).

Construction of Θ̈ in §1 of [EtTh] is slightly different; the function Θ̈
is obtained as a quotient of two sections of a line bundle associated to
cusps.

Essential properties of Θ̈: simple zeroes at cusps and symmetry with
respect to the transformation Ü 7→ Ü−1

If Θ̈ is normalized Θ̈(µ−(Ÿ )) = ±1 then

Θ̈(±i q̈n)−1 = ±q̈n2

Note that the points ±i q̈n are translations of the evaluation point
µ−(Ÿ ) by the group Aut(Ÿ /X ).
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`th root of theta function, ([EtTh],§2, 2.6.1)

In fact, in the theory we will be using an `th root of theta function Θ̈.
Assume that E [2`] ⊂ E (K ). Recall that η̈Θ is a cohomology class in
H1(Πtp

Ÿ
,∆Θ). Then, there exists a cohomology class

η̈Θ ∈ H1(Πtp

Ÿ
, `∆Θ)

which satisfies the property that the image of η̈Θ along the map

H1(Πtp

Ÿ
, `∆Θ)→ H1(Πtp

Ÿ
,∆Θ)

induced by `∆Θ ↪→ ∆Θ is equal to the restriction of η̈Θ to the open
subgroup Πtp

Ÿ
⊂ Πtp

Ÿ
along the map

H1(Πtp

Ÿ
,∆Θ)→ H1(Πtp

Ÿ
,∆Θ).
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`th root of theta function (2)

The cohomology class we have obtained, namely

η̈Θ ∈ H1(Πtp

Ÿ
, `∆Θ)

is called the `th root of theta function. Note that if the cusp ”0” of X is
fixed, then the class η̈Θ is well defined up to an action of `Z× µ2`.

Write (temporarily) θ for the reciprocal −η̈Θ of η̈Θ. Then, if we define

q = q1/2`

then the value of θ at a ”translated cusp” of Ÿ with label j is equal to

qj
2
.
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Summary and next steps

Let us pause for a moment to discuss where we are at the moment.
We have introduced various covers of the punctured elliptic curve X as well
as various theta functions defined on them. We described some of their
properties and gave a group theoretic construction of its cohomology class.
As the next step, we will introduce the notion of a mono-theta
environment, a collection of data closely related to theta function.
Roughly speaking, the purpose of this new notion is to analyse the rigidity
of the Kummer morphism between the ”group theoretic” construction of
theta function (étale-like) and the ”real” theta function (Frobenius-like).
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End of the talk

Thank you for your attention!
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